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Abstract: The management of salt slag, a waste from the secondary aluminum industry, is associated
with huge environmental concerns due to the risk of atmospheric pollution (emission of toxic gases),
groundwater contamination (high salt content that can percolate and cause an increase in salinity)
and soil unavailability (large extensions required for disposal). Therefore, the development of a
sustainable process for its treatment and recovery is of the utmost importance. In this work, a
two-step process for the valorization of salt slag was developed that rendered zeolite as the main
added-value product and NaCl and NHj as byproducts. First, salt slag was hydrolyzed at 90 °C
and at a solid/water ratio of 1/3. More than 90% of salt and ~90% of ammonia were recovered.
In a second step, the hydrolyzed slag was completely transformed into a NaP zeolite under mild
hydrothermal conditions. The zeolite exhibited specific surface area (17 m? g_l), cation exchange
capacity (2.12 meq g~ ') and zeta potential (—52 mV) values that represent good characteristics for
use in the removal of metal ions from aqueous effluents. The transformation of salt slag into zeolite
can be considered a sustainable process with a high contribution to the circular economy.

Keywords: zeolite; salt slag; hazardous waste; hydrolysis; hydrothermal synthesis; sustainability;
waste management; aluminum waste

1. Introduction

Aluminum is a circular material capable of being recycled over and over again without
losing its original properties [1]. It is one of the most recycled metals, with a huge number
of applications due to its unique combination of characteristics, such as softness, lightness,
strength, excellent electrical and heat conductivity, corrosion resistance, low density and low
melting point [2]. These properties make it a fundamental resource for a circular economy;,
as a base material for sectors such as transport, construction, packaging and renewable
energy technologies. Its application in these sectors explains the foreseeable growth of more
than 50% in aluminum demand by 2050 (reaching approximately 107.8 million tons) [3].
European Aluminum’s Vision 2050 articulates a clear outlook for the development of a
decarbonized, circular and energy-efficient aluminum value chain [4]. This strategy is
based on reaching the full potential of the aluminum industry for the circular economy
that will contribute directly to the UN’s Sustainable Development Goals (UNSDGs)—in
particular, SDG 9 “Industry, innovation and infrastructure” and SDG 12 “Responsible
consumption and production”, among others [5].

Recycled aluminum accounts for 36% of Europe’s aluminum metal supply, but by the
middle of this century, the amount of aluminum available for recycling will more than
double (8.6 million tons by 2050) [6]. This increased recycling could reduce CO; emissions
by more than 39 million tons and generate up to 6 billion euros per year for the European
economy as a result of reduced imports [1,3].

One of the most important wastes generated in the secondary aluminum recycling
process is salt slag [7]. It comes from scrap or slag melting processes, where fluxing salts
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(NaCl/KCl, up to 50% of the furnace charge) are added to prevent the oxidation of the
aluminum metal on the surface of the melt. The salt protects the metal from the reactive
atmosphere and facilitates its agglomeration and metal separation, thus increasing the
metal recovery. Approximately 0.5 tons of salt slag are generated per ton of secondary
aluminum produced [8-12]. The chemical and mineralogical composition of salt slag is
very variable due to the different nature of the recycled aluminum scrap and the recycling
processes used (type of furnace, salt requirements, etc.). The average composition includes
5-7% metallic aluminum, 15-30% metallic oxides (Al,O3, MgO, FeO, CaO, etc.) and
45-60% chloride (AICls, NaCl, KCl), along with other compounds, including nitrides (AIN),
fluorides (CaF,, NaF, AlF3, NazAlF4 etc.), carbides (Al4C3), sulfides (Al,S3), phosphides
(AIP), etc. [8,9,13,14].

Salt slag is classified according to the European Catalogue for Hazardous Wastes
with the code 10 03 08 *. This code indicates that the waste comes from aluminum ther-
mal metallurgy, from a salt slag process and from secondary production, which must be
mandatorily disposed of in a hazardous waste site. It is considered highly flammable
(H3-A), irritant (H4), harmful (H5) and leachable (H13) [15,16]. If salt slag is improperly
disposed of, the nearby area can be polluted by toxic metal ion leachate, which can affect
the surface and groundwater. In addition, toxic, explosive and unpleasant-smelling gases
(NHs, CH4, Hy, PH3 and HjS) can be released due to their high reactivity in contact with
air humidity or water, causing serious effects on living beings. The huge production of salt
slag and the aforementioned hazardousness make the disposal of salt slag a worldwide
problem [8,17-19].

Currently, the landfill disposal of salt slag is banned in most European countries, so
this waste must be properly treated to minimize the environmental impact [20]. In Europe,
there are more than 270 known aluminum-processing plants but only approximately
10 salt-slag-recycling facilities. They are located in Germany, France, Italy, Norway, the UK
and Spain [7,8,21]. This means that some EU countries have to transport thousands of
tons of salt slag thousands of kilometers for its processing, which involves an enormous
economic and environmental cost.

Most of the processes described for the treatment of salt slag consist of milling and siev-
ing of the as-obtained salt slag to recover metallic aluminum [22-25]. The rejected finest frac-
tion is then subjected to a leaching process to dissolve and recover the salt content [17,26,27].
The recovered salt can be used as flux for melting aluminum scrap and in other mar-
kets [8,13,17]. During leaching, the released gases are generally combusted [8,27-30]. Peng
et al. [31] described the use of ammonia to obtain different ammonia salts to be used as
fertilizer, and the other gases evolved were absorbed on activated carbon. Concerning the
non-metallic product (cake) obtained from salt leaching, its possible use in the construction
industry was discussed [8,9,17,28,32]. Recent studies have focused on the process of extract-
ing the aluminum content from the nonmetallic cake by acid or alkaline treatments and the
use of the as-obtained aluminum solutions to prepare different kinds of materials, such as
hydrocalumites, aluminates and hydrotalcites [1,33-35]. Nevertheless, these studies were
performed at lab scale and, as a result of these processes, another new cake is generated
that must also be treated.

Zeolites, crystalline aluminosilicates with structures based on a three-dimensional
network of AlO, and SiOy tetrahedra, have been intensively used in many industrial appli-
cations (catalysis, water remediation, gas purification, among others) due to their regular
porous structure and properties [36]. In recent decades, different kinds of waste have been
used to manufacture zeolite, especially fly ash [37,38]. Recently, authors have developed a
process to obtain zeolites using a non-saline aluminum waste with promising results [39,40].
This waste consisted of the finest fraction generated in the slag milling process in the tertiary
industry. The process was based on a one-step hydrothermal synthesis procedure, which
has also been envisaged as useful for salt slag from the secondary aluminum industry. To
our knowledge, a process for the overall recovery of salt slag through the manufacture of
zeolites without generation of any other solid residue has not been reported.
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The objective of this work was to develop a process to obtain zeolite from salt slag
without the generation of any waste. Thus, after the recovery of salt and gases, in a first
stage, the entire non-metallic cake obtained was completely transformed into a zeolite. For
this, salt slag was not subjected to any previous process of milling or sieving, i.e., the salt
slag was used as generated in the aluminum industry. All the solid products and liquors
generated in the process (hydrolyzed slag, salt, brine, gas, mother liquor and zeolite) and
the initial as-received salt slag were well characterized.

2. Materials and Methods
2.1. Raw Materials

The as-received sample of salt slag (provided by Alusigma S.A., Sotiello, Gijon, Spain)
consisted of a dark-grayish granular solid with a grain size <1 mm (Figure 1a). Generally,
heterogeneity (granulometric, compositional, etc.) is a characteristic of waste, and it is
necessary to obtain representative samples before any characterization or use as a raw
material to avoid any uncertainty in the reproducibility and accuracy of the results. Thus,
the bulk sample (~2 kg) was divided into eight representative aliquots by a Laborette
27 rotary cone sample divider. The salt slag sample was not subjected to any process
of milling. The granulometric determination showed that the sample was composed
principally of medium—coarse grain sizes ranging between 125 and 1000 um (Figure 1b).
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Figure 1. Macroscopic appearance of the salt slag (a) and granulometry (b).

The chemical composition of the salt slag is shown in Table 1. The major components,
expressed as oxides, were Al,O3 and Na;O, along with chloride. From this result, the salt
content in the initial slag was ~45%, and it consisted of NaCl. This is also confirmed by the
XRD pattern shown in Figure 2. The total aluminum content was principally distributed in
different phases, such as metallic aluminum, aluminum nitride (AIN), spinel (MgAl,O4)
and corundum (Al,O3) (see magnification of Figure 2). Other phases tentatively assigned
were quartz (5i0;) and silicon. Nevertheless, the background of the XRD pattern indicates
the presence of amorphous or poorly crystalline phases, which could not be unambiguously
identified. The quantitative analysis yielded contents of metallic aluminum and aluminum
nitride of 10.88% and 5.56%, respectively. Both compounds are responsible for the hydrogen
and ammonia gases that can be released when slags come into contact with water or
moisture [18]. The loss of calcination (LOI) was 5.3 & 0.1% and could be attributed to
the decarbonation or dehydration of certain compounds included in the mineralogical
composition of the salt slag.
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Table 1. Chemical composition of the salt slag (FRX, expressed as wt.% oxide, except Cl).

A1203 Si02 Cl Na20 MgO Fe203 CaO SO3 Kzo TiOZ CI‘203 MnO P205 CuO ZnO BaO
30.7 2.7 27.6 30.8 3.7 1.1 1.3 0.2 0.2 0.4 0.1 0.1 0.1 0.3 0.3 0.2
1
1
A A‘l
I i I ' 1 ' I !
10 20 30 40 50 60

26 ()

Figure 2. XRD pattern of the salt slag (1 = halite (NaCl, pdf 77-2064), 2 = corundum (Al,Os, pdf
46-1212), 3 = AIN, pdf 65-0831, 4 = Al, pdf 04-0787, 5 = spinel (MgAl,Oy, pdf 021-1152), 6 = quartz
(SiO,, pdf 83-0539), 7= Si, pdf 027-1402).

For the synthesis of zeolites, a commercial sodium silicate neuter solution (Na;SiOs3,
Panreac, Castellar del Valles, Barcelona, Spain) was added as the SiO; source. Sodium
hydroxide solution (1 M), prepared by dissolving NaOH pellets (98% NaOH, Panreac,
Castellar del Valles, Barcelona, Spain) in distilled water, was used as the alkalizing agent.

2.2. Methods

The process developed for the manufacture of zeolite from salt slag consisted of
two stages. The first one concerned the recovery of brine by hydrolysis of salt slag, and the
second one consisted of the transformation of the non-saline cake from the first stage into
zeolite by a direct hydrothermal process. The recovery of the ammonia generated by the
reaction of slag was studied in both stages.

2.2.1. Hydrolysis of Salt Slag

The hydrolysis of the salt slag was performed using the following procedure: 100 g
aliquots of salt slag were placed into a glass balloon, and a peristaltic pump continuously
dropped the corresponding amount of water. Tests were performed at salt slag/water
ratios of 1/10 and 1/3 and temperatures of 25 and 90 °C. After filtration in a pressure filter,
the hydrolyzed cake (hydrolyzed slag, HS) and filtrate were separated. The hydrolyzed
slag was dried at 100 °C for 24 h and analyzed by XRF. The as-obtained HS was used
in the synthesis of zeolite as the only source of aluminum. The filtrate (brine) was used
to recover NaCl by evaporation/crystallization. Gas released during hydrolysis was
recovered through a 4% boric acid solution to determine the ammonia content by titration
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with a standardized HCI solution. For the identification of the samples, the following
nomenclature has been used: x/y-Tz, where x/y corresponds to the solid /liquid ratio used
(1/3 or 1/10) and z corresponds to the temperature used (25 or 90 °C). Thus, a sample with
an S/L ratio equal to 1/10 and treated at 90 °C will be named 1/10-T90.

The aim of the hydrolysis process was not only to obtain a slag with a very low salt
content to be used in the synthesis of zeolite but also to recover the NaCl content in the
initial salt slag and release ammonia gas during hydrolysis.

2.2.2. Synthesis of Zeolite

The synthesis of zeolite was carried out by a hydrothermal method, as described by
Sanchez-Herndndez et al. [41], using the hydrolyzed salt as a reactant, along with NaySiO3
and NaOH solutions. Experiments were carried out in a Teflon-lined autoclave (Parr, 1 L
volume) with vigorous and continuous stirring at 100 °C for 24 h and at 120 °C for 5 h. All
the reactants were placed into the reactor, and the synthesis was performed in a one-step
process. For the objective of synthesizing zeolite-type NaP (NagAlgSi|gOsp-12H,0), a fixed
Si/ Al ratio of 1.7 was used by adding the corresponding amount of the silicate solution.
After finishing the experiments, solid products were separated from the mother liquor by
pressure filtration, washed with distilled water and dried at 80 °C for 24 h.

2.3. Characterization Techniques

The salt slag, hydrolyzed slag and zeolite were characterized by different analytical
techniques. The granulometry was determined by application of the Standard ASTM C
136-01 [42]; for grain sizes lower than 700 um, the PHI scale [43] was used; the finest
grain size was measured by laser using the Honeywell Microtrac X100 equipment (Verder
Scientific; Haan, Duesseldorf, Germany). The chemical composition was determined by
X-ray fluorescence (XRF) in a wavelength-dispersive spectrometer (S8 Tiger model, Bruker,
Champs—sur-Marne, France). Pressed pellets of 10 g raw material without additives
were prepared for the measurements. Loss on ignition (LOI) was calculated by heating
the samples at 1000 °C for 1 h in a Pt crucible. The aluminum nitride in the salt slag
was analyzed by the Kjeldahl method using a digester Foss Tecator (mod. 2006) and
its distilling unit (mod. 1002) (Foss Iberia, Barcelona, Spain), and subsequent titration
with 0.01 M HCI. The metallic aluminum content was determined by treating samples
with a 10% HCI solution to solve aluminum acid soluble compounds; the filtrate was
analyzed by atomic absorption spectrometry (AAS) using Varian Spectra model AA-220FS
equipment (Varian, Inc., Netherlands). The different effluents of the process (filtrate from
the hydrolysis process and mother liquor from the synthesis of zeolite) were analyzed by an
inductively coupled plasma optical emission spectrometer, Spectro Arcos ICP-OES (Spectro
Analytical Instruments GmbH, Kleve, Germany). The pH and conductivity values were
simultaneously measured by a multimeter provided with the two corresponding electrodes
(MM41, Crison, Hach Lange Spain, S.L.U., L'Hospitalet de Llobregat, Barcelona, Spain). The
amorphous or crystalline nature of the raw materials and products was determined by X-ray
diffraction (XRD) (D8 Advance model, Bruker, Champs-sur-Marne, France) using CuKa
radiation. The diffractograms were recorded in the interval 20 = 10-60° with a scan rate of
0.07 s per step. XRD data processing was performed with the EVA Difrac Plus 13.0 program,
and crystalline phase identification was performed with the Powder Diffraction File (PDF)
database. The morphology of the zeolite was examined by scanning electron microscopy
(SEM) in a Hitachi 54800 microscope (Hitachi High—Tech Europe GmbH, Krefel, Germany)
on a previously graphite-coated sample. Textural characterization of zeolite was performed
by determination of nitrogen adsorption/desorption isotherms at 77 K in an ASAP 2010
Micromeritics Instrument Corporation (Norcross, GA, USA). Before the measurements,
the samples were outgassed at 60 °C in vacuum for 24 h. The BET specific surface area
(SBET) was calculated by the BET method in the relative pressure range of 0.0015 to 0.3007.
The external area (SEXT) was calculated by the t-plot method from the slope of the linear
fit in the thickness range (t) of 0.35 to 0.50 nm according to the Harkinse-Jura equation.
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The pore size distribution was calculated using the Barrett-Joyner—-Halenda (BJH) method
in the adsorption branches. A study of the chemistry of the zeolite surface was carried
out by determination of the zeta potential (Pz) and the cation exchange capacity (CEC).
Pz was measured by a laser Doppler electrophoresis analyzer (ZetaSizer Nano, Malvern
Instruments Ltd., Worcestershire, UK) using 0.005 g of sample in 100 mL of aqueous
dispersion at 25 °C. The cation exchange capacity of the zeolite was determined by the
NHj ion exchange method with a 1 M NH4Cl solution (pH ~7).

3. Results and Discussion
3.1. Hydprolysis of Salt Slag and Characterization of Products

The macroscopic appearances of the hydrolyzed slag after filtration (wet and dry) are
shown in Figure 3a,b, respectively. Visual observation indicated a decrease in the grain size
in the hydrolyzed salt in relation to the initial salt slag (Figure 1a).

(b)

Figure 3. Hydrolyzed slag: (a) wet and (b) dry.

The results of the hydrolysis tests are collected in Table 2, which includes the experi-
mental conditions of the tests performed, the values of pH, density and ionic conductivity
(LC.) of the filtrates (brine) and the percentage recovery of NaCl and ammonia gas. Ammo-
nia is generated by the reaction between the AIN content in the slag and water according to
Equation (1).

2AIN + 3H20 — A1203 + 2NHj3; (1)

Table 2. Experimental conditions of hydrolysis of salt slag and results.

T Ratio Filtrate (Brine) Recovered Recovered
Hydrolysis Tests ©0) Slag/Water oH LC. Density N(;;lCl N0H3
(mS cm—1) (gL-1) (%) (%)
1/10-T25 25 1/10 10.0 £ 0.1 64+ 4 1.03 £ 0.01 96 n.r.
1/3-T25 25 1/3 99 +0.1 159 + 2 1.09 £ 0.01 89 n.r.
1/10-T90 90 1/10 104 +0.1 68 +£3 1.03 + 0.01 98 77
1/3-T90 90 1/3 9.6 +£0.1 168 -1 1.09 + 0.01 80 88

n.r. = not recovered.

The percentage of recovered NHj3; was calculated taking into consideration that, ac-
cording to the AIN content in the salt slag, a maximum of 30.40 Nm? of gas can be recovered
per ton of salt slag.

As expected, the values of the ionic conductivity of the brine obtained for the salt
slag/water ratio of 1/3 were much higher than those corresponding to the 1/10 ratio due
to the higher concentration of the solution, and, accordingly, the density values were due
to the major concentration of salt.

The chemical composition of the brines obtained from hydrolyses 1/10-T25 and 1/3-
T90 is collected in Table 3. The content of Na was almost three times the amount of brine
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obtained at a salt slag/water ratio of 1/3, but other significant elements, such as Al, were
not affected by the dilution or temperature. In contrast, the Ca content was higher for
the lowest salt slag/water ratio (1/10), probably due to the dissolution of any calcium
carbonate included in the initial salt slag.

Table 3. Semiquantitative chemical composition of brine (ICP-OES, in ug mL~1).

Brine Na

K

Mo Cu Cr Pb Mg

Al Ca Si S P Sr Ba Li Zn Mn Ti Ni Co

1/10-T25 12,885
1/3-T90 39,617

324
640

42 116 18 14 1 6 19 0.4 <0.2 <0.2
35 18 15 47 n.d. n.d. 4 <0.2 1 <0.2

Elements with concentration <0.1 are not included; n.d. = not determined.

To recover the salt, the brine was subjected to a process of evaporation/crystallization.
For the two temperatures tested, the recovery of NaCl was higher at a 1/10 ratio than at
a 1/3 ratio due to the major volume of diluent (see Table 2). The chemical composition
of a sample of salt obtained by evaporation/crystallization of brine 1/10-T25 is shown in
Table 4.

Table 4. Chemical composition of salt from hydrolysis test 1/10-T25 (FRX, expressed as wt.% oxide,
with the exception of CI).

Cl Na20

A1203 Si02 Fe203 CaO SO3 K20 Br SrO

55.1 43.3

0.5 0.1 0.03 0.5 0.1 0.5 0.02 0.01

Concerning NHj (see Table 2), the gas was not recovered when tests were performed
at room temperature. This may indicate that the hydrolysis of AIN did not occur to a large
extent at this temperature or that, at room temperature, the effective stripping of the gases
is not achieved.

According to the results obtained from the hydrolysis of the salt slag, although the test
performed at a salt slag/water ratio of 1/10 allowed the major recovery of NaCl, the large
volume of water that must be evaporated during the salt crystallization could make the
process economically unviable. On the other hand, the higher the temperature of hydrolysis
is, the higher the ammonia recovery. Thus, the best conditions for the hydrolysis of salt
slag could be salt slag/water ratios of 1/3 and 90 °C.

The chemical composition of the hydrolyzed slag is shown in Table 5. Elements with
values <0.1, such as K, Cr, Sr and Pb, were not included. The Al,O3 values ranged between
62 and 67%, being slightly higher in the tests carried out at room temperature, for the same
S/L ratio, which indicates a lower loss of Al by dissolution.

Table 5. Chemical composition of the hydrolyzed slag (FRX, expressed as wt.% oxide, with the
exception of Cl).

Hydrolyzed Slag

Al,O3

SiO, Cl Na,O MgO Fe,O3 CaO SO3 TiO, MnO CuO ZnO BaO

1/10-T25
1/3-125
1/10-T90
1/3-T90

67.4
65.3
65.3
62.1

4.0 2.8 25 7.8 23 1.7 0.4 0.8 0.3 0.8 0.7 0.3
34 3.5 3.3 8.1 2.0 1.8 0.4 0.7 0.3 0.7 0.6 0.4
6.1 1.9 1.8 7.0 3.1 24 0.5 1.1 0.3 1.0 0.8 0.5
53 7.3 7.4 6.5 25 1.9 0.3 0.7 0.2 0.7 0.5 0.3

The CI (or Na) content was higher in the samples obtained in the tests with a higher
S/L ratio. It should be taken into account that the cakes were not washed, so part of the
salt content corresponds to the brine retained in the solid during filtration.

3.2. Synthesis of Zeolite

The synthesis of the zeolite was carried out using hydrolyzed slags 1/10-T25 and
1/3-T90. Table 6 lists the synthesis conditions and the results obtained, which include
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the reaction yield (expressed as mass of zeolite obtained per mass of the hydrolyzed slag
used in the synthesis process) and the characteristics of the mother liquor (filtrate from the
synthesis process), such as pH, ionic conductivity and density.

Table 6. Experimental conditions for the synthesis of zeolite from hydrolyzed slag and mother liquor

characteristics.
Experimental Conditions Yield Mother Liquor
ie
Hydrolyzed SLAG Zeolite I.C Densit

o Myzeo1 (g)/mpg () .C. ensity

T(€O t (h) eo pH (mS cm-1) (gL-1)
1/10-T25 71 /10-120-5h 120 5 1.9 128 £ 0.1 145 + 2 1.03 +0.01
) 71 /10-100-24h 100 24 1.8 129 £0.1 144 £2 1.04 £0.01
1/3-T90 Z1/3-100-24h 100 24 1.8 128 +0.1 147 +2 1.04 + 0.01

The pH, conductivity and density values of the mother liquors were quite similar for
the three synthesis experiments carried out. The mass of the zeolite obtained was almost
twice the mass of the hydrolyzed slag used in the synthesis due to the high molecular
weight of the zeolite. A slightly higher yield was obtained for the reaction performed at
120 °C for 5 h, because the temperature favored the dissolution of aluminum oxide content
in the hydrolyzed slag.

When the hydrolyzed slag used in the synthesis of zeolite comes from a hydrolysis
process carried out at room temperature, ammonia gas is generated during the synthesis,
and thus, in these experiments, 80-90% of ammonia was recovered. This indicates that
ammonia can be recovered in the hydrolysis process or in the synthesis process, depending
on the temperature used in the first process.

The XRD patterns of the samples are shown in Figure 4. All samples exhibited a
profile characteristic of zeolite-type P (NaP, NagAlgSii0O3,.12H,0, cubic). Weak peaks
attributable to spinel and quartz could be tentatively assigned. A slight splitting of the
diffraction peaks corresponding to NaP zeolite was observed, principally for samples
Z1/10-100-24h and Zj /10-120-5n, Which could be due to, according to Taylor and Roy [44],
the presence of the tetragonal phase of zeolite P (Nas 7Als 75i103032.12H,0). NaP zeolites
present variable compositions, with Si/ Al ratios ranging between 1.59 and 2.63, and
exhibit different symmetries (cubic, tetragonal or orthorhombic) depending on the synthesis
conditions [44—46]. The crystallinity of the samples was higher for zeolite Z; /3.19p-241 than
for the other two zeolites. This seems to indicate that the use of hydrolyzed slag obtained
at a high temperature (90 °C) leads to a more crystalline zeolite than those obtained from
low-temperature hydrolyzed slag. This can be attributed to the presence or absence of
AIN during the synthesis of zeolite: if the hydrolysis of salt slag is performed at room
temperature, AIN is not hydrolyzed in this step; accordingly, hydrolysis and, consequently,
ammonia gas release occur in the zeolite synthesis process.

The morphology of sample Z1,3.100-24n at different magnifications is shown in
Figure 5a—-d. Atlow magnification, the morphology consisted of “cauliflower-like” primary
aggregates. At high magnification, these aggregates were formed by smaller secondary
aggregates consisting of well-defined edges and anisotropic growth. Although morphology
is very dependent on the synthesis process [45], this morphology has been reported for NaP
zeolites obtained from other aluminum wastes [40], fly ash [47] and chemical reagents [48],
among others.
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(b)

J (a)

26 (°)

Figure 4. DRX pattern of zeolite obtained under the different experimental conditions studied:
(@) Z1/3-100-24n; (b) Z1 /10-100-24n and (c) Z /19-120-5n (dots indicate the XRD reflections of NaP zeolite).

Figure 5. SEM images of zeolite at different magnifications obtained from salt slag: (a) x1-103;
(b) x1-10%; () x2.5-10%; (d) x6-10%.
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The textural properties of the zeolite, such as the specific surface area (Sggt), external
surface (Sext), volume and pore size, were determined from the N; adsorption/desorption
isotherms (Figure 6a). As can be seen, the isotherms exhibit type IV behavior, which is typical
of mesoporous materials such as zeolites. The small difference between Sggt (17.00 m? g’l)
and Sex (16.88 m? g~!) is related to the low micropore volume (8.4 x 105 cm?® g~1), which
indicates that the sample was practically a non-microporous material. Ali et al. [49] reported
SgeT values ranging from 6 to 14 m? g~! for NaP zeolite obtained by chemical treatment at
100 °C for 4 days. Sdnchez-Hernandez et al. [40] reported values of ~14 m? g’l for zeolite
obtained from a non-saline aluminum waste coming from slag milling. The curve of the
pore size distribution obtained by the BJH method (Figure 6b) also shows a mesoporous
distribution with a predominant pore size of 3.8 nm.
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Figure 6. Nitrogen adsorption/desorption isotherms (a) and distribution of pore diameter (b) of
zeolite obtained from salt slag.

The NaP zeolite obtained from the salt slag exhibited a NH4Cl CEC value of 2.12 meq g+,
which is quite similar to the values reported in the literature for low Si/ Al zeolites [36,49,50].
The variation in the zeta potential (Pz) with pH (Figure 7) shows that the surface of the
zeolite was negatively charged under basic pH values. The initial value of Pz was —52 mV,
which corresponds to a pH value of 9.2. Negative zeta potential values were maintained up
to pH = 4.6, which is the isoelectric point. This parameter is related to the external surface
charge, which depends on the SiO4/AlO, ratio and plays an important role in adsorption
processes. These findings confer to zeolite excellent characteristics to be used in processes
related to removing metallic ions by cation exchange [51,52].
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Figure 7. Variation in the zeta potential of the zeolite obtained from salt slag with the pH in
aqueous suspension.
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4. Conclusions

The results of this study allow us to conclude that a hazardous waste, such as salt slag
produced in secondary aluminum metallurgy, can be valorized to produce zeolites in a
straightforward process, which also allows salt and ammonia to be obtained as byproducts.
Thus, for each ton of hydrolyzed slag, two tons of zeolite can be obtained. Moreover, more
than 90% and 75% of salt and ammonia can be recovered as byproducts.

Although the work presented in this paper has been performed at laboratory scale, it
has been conceptualized for a future scale-up. In this sense, some steps that could increase
the cost of technology implementation have been avoided. For example, salt slag was
used with the same granulometry as the one leaving the generating industry (there was
no grinding or sieving process), and the hydrolyzed slag was not subjected to washing to
remove remaining salt (the remaining NaCl content in the hydrolyzed slag did not affect
the formation of zeolite). Nevertheless, future design and operation processes at pilot scale
are under consideration.

Although the recovery of salt can be a costly process, the huge market for the com-
mercialization of zeolite and the other byproducts can increase the benefits. Furthermore,
the use of renewable energy such as solar energy for highly energy-demanding processes
should be taken into account to reduce the energy cost.

Thus, this represents an important contribution to sustainability from both an envi-
ronmental and economic point of view: the waste is removed from the usual hazardous
waste management routes (saving costs and the enormous occupation of space) and is
transformed into a raw material that can be used to obtain value-added materials.
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